Демонстрационный вариант ЕГЭ по математике 2014
11 класс
Часть 1
B1. Поезд отправился из Санкт-Петербурга в 23 часа 50 минут и прибыл в Москву в 7 часов 50 минут следующих суток. Сколько часов поезд находился в пути?
B2. Футболка стоила 800 рублей. Затем цена была снижена на 15%. Сколько рублей сдачи с 1000 рублей должен получить покупатель при покупке этой футболки после снижения цены?
B3. На диаграмме показано распределение выплавки меди в 10 странах мира (в тысячах тонн) за 2006 год. Среди представленных стран первое место по выплавке меди занимали США, десятое место — Казахстан. Какое место занимала Канада?
B4. Строительная фирма планирует купить 70 м3 пеноблоков у одного из трёх поставщиков. Цены и условия доставки приведены в таблице. Сколько рублей нужно заплатить за самую дешёвую покупку с доставкой?
Поставщик | Стоимость пеноблоков (руб за 1 м3) |
Стоимость доставки (руб) |
Дополнительные условия доставки |
А | 2600 | 10 000 | Нет |
Б | 2800 | 8 000 | При заказе товара на сумму свыше 150 000 рублей доставка бесплатная |
В | 2700 | 8 000 | При заказе товара на сумму свыше 200 000 рублей доставка бесплатная |
B5. Найдите площадь ромба, изображённого на клетчатой бумаге с размером клетки 1 см x 1 см. Ответ дайте в квадратных сантиметрах.
B6. В сборнике билетов по биологии всего 25 билетов, в двух из них встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете не будет вопроса о грибах.
B7. Найдите корень уравнения
B8. Треугольник ABC вписан в окружность с центром O . Найдите угол BOC , если угол BAC равен 32o . Ответ дайте в градусах.
B9. На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек: x1, x2, ..., x9. Среди этих точек найдите все точки, в которых производная функции f (x) отрицательна. В ответе укажите количество найденных точек.
B10. В цилиндрическом сосуде уровень жидкости достигает 16 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 2 раза больше диаметра первого? Ответ выразите в сантиметрах.
Часть 2
Ответом на задания В11–В15 должно быть целое число или конечная
десятичная дробь. Каждую цифру, знак минус и запятую пишите в отдельной клеточке
в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.
B11. Найдите , если и .
B12. Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковой сигнал частотой 749 МГц. Приёмник регистрирует частоту сигнала, отражённого от дна океана. Скорость погружения батискафа (в м/с) и частоты связаны соотношением , где c =1500 м/с — скорость звука в воде, f0 — частота испускаемого сигнала (в МГц), f — частота отражённого сигнала (в МГц). Найдите частоту (в МГц) отражённого сигнала, если батискаф погружается со скоростью 2 м/с.
B13. Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы совпадает с центром основания конуса. Радиус сферы равен . Найдите образующую конуса.
B14. Весной катер идёт против течения реки в раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).
B15. Найдите точку максимума функции .
Для записи решений и ответов на задания С1-С4 используйте бланк ответов №2. Запишите сначала номер выполняемого задания (С1, С2 и т.д.), а затем полное обоснованное решение и ответ.
С1. а) Решите уравнение .
б) Найдите все корни этого уравнения, принадлежащие промежутку .
С2. В прямоугольном параллелепипеде ABCDA1B1C1D1 известны рёбра: AB = 3, AD = 2, AA1 = 5. Точка O принадлежит ребру BB1 и делит его в отношении 2:3, считая от вершины B. Найдите площадь сечения этого параллелепипеда плоскостью, проходящей через точки A, O и C1.
С3. Решите систему неравенств
С4. Две окружности касаются внешним образом в точке K . Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D , прямая AK пересекает вторую окружность в точке C . а) Докажите, что прямые AD и BC параллельны. б) Найдите площадь треугольника AKB , если известно, что радиусы окружностей равны 4 и 1.
С5. Найдите все значения a, при каждом из которых наименьшее значение функции больше 1.
С6. На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно -3, среднее арифметическое всех положительных из них равно 4, а среднее арифметическое всех отрицательных из них равно -8. а) Сколько чисел написано на доске? б) Каких чисел написано больше: положительных или отрицательных? в) Какое наибольшее количество положительных чисел может быть среди них?
Ответы
B1. 8
B2. 320
B3. 7
B4. 192000
B5. 12
B6. 0,92
B7. 9
B8. 64
B9. 3
B10. 4
B11. -0,8
B12. 751
B13. 20
B14. 5
B15. -5
C1. а); б)
C2.
C3. -3; 0; [1;2)
C4. 3,2
C5.
C6. а) 44; б) отрицательных; в) 17
Инструкция по выполнению работы
На выполнение заданий варианта КИМ по математике даётся 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание.
Часть 1 содержит 10 заданий (задания В1–В10) базового уровня сложности, проверяющих наличие практических математических знаний и умений.
Часть 2 содержит 11 заданий (задания В11–В15 и С1–С6) повышенного и высокого уровней по материалу курса математики средней школы, проверяющих уровень профильной математической подготовки.
Ответом к каждому из заданий В1–В15 является целое число или конечная десятичная дробь. При выполнении заданий С1–С6 требуется записать полное решение и ответ.
Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой, капиллярной или перьевой ручки.
При выполнении заданий Вы можете пользоваться черновиком.
Обращаем Ваше внимание, что записи в черновике не будут учитываться при оценивании работы.
Советуем выполнять задания в том порядке, как они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.
Баллы, полученные Вами за выполненные задания, суммируются.
Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.