МФТИ Олимпиада по математике 2017 Условия задач

Условия задач олимпиады по математике МФТИ 2017

цитаты

Билет 1

  1. Когда к квадратному трехчлену f(x) прибавили 2, его наименьшее значение увеличилось на 1, а когда из него вычли x^2, его наименьшее значение уменьшилось на 3. А как изменится наименьшее значение f(x), если к нему прибавить 2x^2?
  2. Решите неравенство x^{\log_3x}-2\le(\sqrt[3]{3})^{\log_{\sqrt{3}}^2x}-2x^{\log_3\sqrt[3]{x}}
  3. Известно, что числа x,y,z образуют в указанном порядке арифметическую прогрессию с разностью \alpha=arccos(-2/5), а числа 3+\sin x,3+\sin y,3+\sin z образуют в указанном порядке непостоянную геометрическую прогрессию. Найдите \sin y.
  4. В треугольнике ABC угол при вершине A в два раза больше угла при вершине C. Через вершину B проведена касательная к окружности Ω, описанной около треугольника ABC.
    Расстояния от точек A и C до этой касательной равны соответственно 4 и 9.
    а) Найдите расстояние от точки A до прямой BC.
    б) Найдите радиус окружности Ω и длину стороны AB.
  5. На координатной плоскости рассматриваются квадраты, все вершины которых имеют целые неотрицательные координаты, а центр находится в точке (60;45). Найдите количество таких квадратов.
  6. Найдите все значения параметра b такие, что система \left\{\begin{array}{l l} x\cos a+y\sin a-2\le0,\\ x^2+y^2+6x-2y-b^2+4b+6=0 \end{array}\right.  имеет хотя бы одно решение при любом значении параметра a.
  7. Основание треугольной пирамиды ABCD - правильный треугольник ABC. Объем пирамиды равен 25/\sqrt{3}, а ее высота, проведенная из вершины D, равна 3. Точка M - середина ребра CD. Известно, что радиусы сфер, вписанных в пирамиды ABCM и ABDM, равны между собой. а) Найдите все возможные значения угла между гранями пирамиды при ребре AB; б) Найдите все возможные значения длины ребра CD, если дополнительно известно, что грани BCD и ABC взаимно перпендикулярны.

Варианты вступительных экзаменов

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *