Задачи по школьной математике. Дробно-рациональные неравенства

  1. \frac{3}{x}>\frac{1}{2}
  2. 9x^2-x+9\geq 3x^2+18x-6
  3. \frac{(x+4)(3-x)}{2(x+1)}\geq 0
  4. \frac{1}{x+1}-\frac{2}{x^2-x+1}\leq\frac{1-2x}{x^3+1}
  5. \frac{(x^2+21-10x)(x^2-6x-7)}{(x^2+5x+6)(x^2-4)(x^2-x+1)}\leq 0
  6. \frac{10}{x^2-7x+12}+\frac{10}{x-4}\leq -1
  7. \frac{1}{x+1}<\frac{2+3x-x^2}{3+4x+x^2}
  8. \frac{25}{x^2-4x}\geq x^2-4x
  9. (x^2-2x)(2x-2)-\frac{9(2x-2)}{x^2-2x}\leq 0
  10. x^2+(x+1)^2<\frac{15}{x^2+x+1}
  11. \frac{(x-2)(x-4)(x-7)}{(x+2)(x+4)(x+7)}>1
  12. x(x-4)(x-6)(x-2)<9
  13. 1<\frac{3x^2-7x+8}{x^2+1}\leq 2
  14. \frac{1}{x^2+8x-9}\geq \frac{1}{3x^2-5x+2}
 

Комментариев 3 к “Задачи по школьной математике. Дробно-рациональные неравенства

  1. 1) (0; 6)
    2) (-беск; 3/2] U [5/3; +беск)
    3) (-беск; -4] U (-1; 3]
    4) (-беск; -1) U (-1; 2]
    5) (-3; -2)U(-2;-1]U(2;3)U{7}

  2. 6) [ (-3-корень(41))/2; (-3+корень(41))/2] U (3;4)
    7) (-3; -1)
    8) [-1;0)U(4;5]
    9) (-беск; -1]U(0;1]U(2;3]
    10) (-2; 1)
    11) (-беск; -7) U (-4; -2)
    12) (3-корень(10); 3) U (3; 3+корень(10))

Комментарии закрыты