Олимпиадные задачи по математике. Логические принципы

  1. На улице, встав в кружок, беседуют четыре девочки: Аня, Валя, Галя и Надя. Девочка в зеленом платье (не Аня и не Валя) стоит между девочкой в голубом платье и Надей. Девочка в белом платье стоит между девочкой в розовом и Валей. Какое платье носит каждая из девочек?
  2. В очереди за билетами в кино стоят друзья: Юра, Миша, Володя, Саша и Олег. Известно, что Юра купит билет раньше, чем Миша, но позже Олега, Володя и Олег не стоят рядом, а Саша не находится рядом ни с Олегом, ни с Юрой, ни с Володей. Кто за кем стоит?
  3. Задача о Смите-Джонсоне-Робинсоне. Смит, Джонсон и Робинсон работают в одном поезде машинистом, кондуктором и кочегаром. В поезде едут три пассажира с теми же фамилиями (пассажира будем называть “Мистер” (М-р)). М-р Робинсон живет в Лос-Анджелесе, кондуктор – в Омахе. М-р Робинсон давно позабыл всю алгебру, которой его учили в колледже. Однофамилец кондуктора живет в Чикаго. Кондуктор и один из пассажиров, известный специалист по математической физике, ходят в одну Церковь. Смит всегда выигрывает у кочегара партию в бильярд. Как фамилия машиниста?
  4. В доме живут А, его жена В и трое их детей C, D, E. При этом справедливы следующие утверждения: а) если А смотрит телевизор, то и В смотрит телевизор; б) хотя бы один из D и E смотрит телевизор; в)ровно один из B и C смотрит телевизор; г) C и D либо оба смотрят, либо оба не смотрят телевизор; д)если E смотрит телевизор, то A и D тоже смотрят телевизор. Кто смотрит и кто не смотрит телевизор?
  5. Троим мудрецам завязывают глаза и говорят, что каждому из них на голову надели либо красный, либо зеленый колпак. Всего было два зеленых и три красных колпака. Затем глаза развязывают и просят выйти знающего цвет колпака на своей голове. Все три колпака были красные. Через несколько минут третий мудрец, наиболее сообразительный, вышел из комнаты. Как он установил цвет колпака?
  6. Брауну, Джонсу и Смиту предъявлено обвинение в соучастии в ограблении банка. Похитители скрылись на поджидавшем их автомобиле. На следствии Браун показал, что преступники были на синем “Бьюике”. Джонс сказал, что это был черный “Крайслер”, а Смит утверждал, что это был “Форд Мустанг” и ни в коем случае не синий. Стало известно, что желая запутать следствие, каждый из них указал правильно либо только марку машины, либо ее цвет. Какого цвета и какой марки был автомобиль?
  7. Разбирается дело Брауна, Джонса и Смита. Один из них совершил преступление. На следствии каждый из них сделал два заявления. Браун: “Я не сделал этого. Смит сделал это”. Джонс: “Смит невиновен. Браун сделал это”. Смит: “Я не делал этого. Джонс не делал этого”. Суд установил, что один из них дважды солгал, другой – дважды сказал правду, третий – один раз солгал, один раз сказал правду. Кто совершил преступление?
  8. Найти натуральное число А, для которого из трех утверждений: “А+51 – точный квадрат”, “последняя цифра числа А - единица” и “А-38  - точный квадрат” – два верны, а третье неверно.
  9. Известно, что а и b – натуральные числа. И из следующих четырех утверждений: “a+1 делится на b”, ”a равно 2b+5”, “a+b делится на 3”, “a+7b  - простое число”  - три верных, а одно неверное. Найти все возможные пары a, b.
  10. Найти все такие двузначные числа А, для каждого из которых два из следующих четырех утверждений верны, а два – неверны: “А делится на 5”,”А делится на 23”,”А+7 есть точный квадрат”,”А-10 есть точный квадрат”.