Неравенства с модулем
- \((|x|-1)(2x^2+x-1)\leq 0\)
- \(\frac{x+1}{|x-1|}+\frac{1-2x}{x-1}\geq 0\)
- \(\frac{3|x|-11}{x-3}>\frac{3x+14}{6-x}\)
- \(\displaystyle\frac{|x-1|}{1-\frac{6}{|x-1|}}<-1\)
- \(\frac{x^2-4x+3}{\sqrt{x-|2x-1|}}\geq 0\)
- \(\frac{|x-2|+1}{|2x+3|-7}\leq 0\)
- \(||x^2-8x+2|-x^2|\geq 2x+2\)
- \(|x^3+2x^2+2|<|x^3+3x^2+3x-2|\)
- \(\frac{|x-4|-|x-1|}{|x-3|-|x-2|}<\frac{|x-3|+|x-2|}{|x-4|}\)
- \(\frac{(x^2+x+1)^2-2|x^3+x^2+x|-3x^2}{10x^2-17x-6}\geq 0\)
Ответы
- [1/2; 1]U{-1}
- [0;1)U(1;2]
- \((-2;2)\cup (2;3)\cup (6; +\infty)\)
- (-5; -1)U(3;7)
- (1/3; 1)
- (-5; 2)
- \((-\infty;0]\cup [1;2]\cup [5;+\infty)\)
- \((-4;-3/2)\cup (-1;0)\cup (1;+\infty)\)
- (3;4)U(4;7)
- \((-\infty; -2-\sqrt{3}]\cup (-0,3; -2+\sqrt{3})\cup {1}\cup (2;+\infty)\)