Иррациональные уравнения
- \(\sqrt{2x+3}+\sqrt{x-2}=\sqrt{3x+7}\)
- \(22x^2+10x=\sqrt{1276x^3+364x^2}\)
- \(\sqrt{x^4-2x-5}=1-x\)
- \(\sqrt{x+1}-\sqrt{4x-3}=1\)
- \(\frac{1}{2}-x^2=\sqrt{\frac{1}{2}-x}\)
- \(\sqrt{1+x^2}+\sqrt{1+x^2-x\sqrt{3}}=\sqrt{3}\)
- \(\sqrt{x}+\sqrt{x(x+2)}-\sqrt{(x+1)^3}=0\)
- \(\sqrt[5]{32x^2-32}+\sqrt[5]{(x+1)^2}+\sqrt[5]{x^2-2x+1}=0\)
- \(\sqrt[3]{(x+1)^2}-\sqrt[3]{x^2+5x+6}=\sqrt[3]{x^2+4x+3}-\sqrt[3]{x^2+3x+2}\)
- \(x\sqrt{y-1}+y\sqrt{x-1}=xy\)
- \(\sqrt{x^2+5x+4}-\sqrt{x^2-x-6}=-\sqrt{2x^2+4x-2}\)
- \(\frac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)
- \(x^2+x+2=\frac{4}{\sqrt{3}}x\sqrt{x+2}\)
- \(\sqrt{1-x^2}=4x^3-3x\)
- \(\frac{1}{x}+\frac{1}{\sqrt{1-x^2}}=\frac{35}{12}\)
- \(\sqrt{3x^2-1}+\sqrt{x^2-x+1}=\sqrt{3x^2+2x+1}+\sqrt{x^2+2x+4}\)
- \(\sqrt{(x+2)(2x-1)}-3\sqrt{x+6}=4-\sqrt{(x+6)(2x-1)}+3\sqrt{x+2}\)
- \(\sqrt{x^2-4x+4}-\sqrt{x^2+2x+1}=3\)
- \(3\sqrt{x^2-4x+4}-4-x=(\sqrt{-x^2+x+2})^2\)
- \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=2\)
Ответы
- 3
- 0; 2
- \(-\sqrt{3}\)
- 7/9
- \((\sqrt{3}-1)/2\)
- \(\sqrt{3}/3\)
- \((\sqrt{5}-1)/2\)
- 0
- -3/2
- (2; 2)
- -4
- 5; 6; 7
- 1; \((3+\sqrt{33})/2\)
- \(-\sqrt{2}/2; -\sqrt{2-\sqrt{2}}/2; \sqrt{2+\sqrt{2}}/2\)
- 4/5; 3/5; \(-(5+\sqrt{73})/14\)
- -1
- 7
- \((-\infty; -1]\)
- 0
- [1; 2]