Показательные уравнения
- \(7\cdot 5^x=5\cdot 7^x\)
- \(2\cdot 7^y=7\cdot 2^y\)
- \(\displaystyle\frac{5^{x+25}}{19}=\displaystyle\frac{5}{19^{x+25}}\)
- \(8^{x+1}-5\cdot 8^x=192\)
- \(3^{x+3}-2\cdot 3^x=225\)
- \(\displaystyle\frac{9^{x+22}}{17}=\displaystyle\frac{9}{17^{x+22}}\)
- \(5^{13x-4}\cdot 4^{4x+13}=5^{5x+4}\cdot 4^{12x+5}\)
- \(4^{x+1}+15\cdot 2^x-4=0\)
- \(11^x-12\cdot 11^x+1=0\)
- \(4\cdot 9^x-6^x-3\cdot 2^x=0\)
- \((2x-3)\cdot 5^{3x-2}=2x-3\)
- \(\displaystyle\frac{7^{x^2-x}}{x-2}=\frac{49}{x-2}\)
- \(\displaystyle\frac{29^{x^2-81}-1}{x-9}=0\)
- \(\displaystyle\frac{17^{x^2-4}-1}{x-2}=0\)
- \((x+1)(x-6)\cdot 8^{\sqrt{3-x}}=0\)
- \((x+7)(x-4)\cdot 5^{\sqrt{3-x}}=0\)
- \(\displaystyle\frac{x^2}{6^x-36}=\frac{4}{6^x-36}\)
- \(\displaystyle\frac{x^2}{2^x-64}=\frac{36}{2^x-64}\)
- \(\displaystyle\frac{9^{x+20}}{11}=\frac{9}{11^{x+20}}\)
- \(3^{8x-5}\cdot 7^{x+4}=3^{2x+1}\cdot 7^{7x-2}\)
- \((x-3)(x-6)\cdot 9^{\sqrt{x-4}}=0\)
- \(25^{x+1}+24\cdot 5^x-1=0\)
- \(2^{2x}+2^x-2=0\)
- \(3^{2x}-2\cdot 3^x-3=0\)
- \(6\cdot 5^{-2x+3}-1=5^{-x+1}\)
- \(7\cdot 3^{x+1}-5^{x+2}=3^{x+4}-5^{x+3}\)
- \(5^{2x}-7^x-7\cdot 5^{2x+1}+5\cdot 7^{x+1}=0\)
- \(2^{x(x+2)-0,5}=4\sqrt{2}\cdot 4^x\)
- \(1000\cdot (0,1)^2=100^x\)
- \(6^{2x+4}=3^{3x}\cdot 2^{x+8}\)
- \(4^x\cdot 5^{x+1}=5\cdot 20^{2-x}\)
- \(4^{x-1}-3\cdot 2^{x-2}=1\)
- \(4+2^x=2^{2x-1}\)
- \(2\cdot 7^{3x}-5\cdot 49^{3x}+3=0\)
- \(2^{x-1}-2^{x-2}=6\cdot 3^{2-x}\)