Задачи по школьной математике. Преобразование выражений IV

Преобразование выражений

  1. \(\displaystyle \frac{x+3}{x^2+9}\cdot\left(\frac{x+3}{x-3}+\frac{x-3}{x+3}\right)\)
  2. \(\displaystyle \frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2-x^2}+\frac{1}{x^2+2xy+y^2}\right)\)
  3. \(\displaystyle \left(\frac{x-2y}{x+2xy}-\frac{1}{x^2-4y^2}:\frac{x+2y}{(2y-x)^2}\right)\cdot\frac{(x+2y)^2}{4y^2}\)
  4. \(\displaystyle 1-\left(\frac{2}{a-2}-\frac{2}{a+2}\right)\cdot\left(a-\frac{3a+2}{4}\right)\)
  5. \(\displaystyle \left(\frac{2a}{2a+b}-\frac{4a^2}{4a^2+4ab+b^2}\right):\left(\frac{2a}{4a^2-b^2}+\frac{1}{b-2a}\right)\)
  6. \(\displaystyle \left(\frac{1}{a-c}-\frac{3c^2}{a^3-c^3}-\frac{c}{a^2+ac+c^2}\right)\cdot\left(c+\frac{a^2}{a+c}\right)\)
  7. \(\displaystyle\frac{b-c}{b}-\frac{b}{b+c}\)
  8. \(\displaystyle \frac{x+1}{x-2}-\frac{x+3}{x}\)
  9. \(\displaystyle \frac{2a}{2a-1}-\frac{1}{2a+1}\)
  10. \(\displaystyle \frac{a}{7a-14}+\frac{1}{2-a}\)
  11. \(\displaystyle \frac{a^2-1}{a-b}\cdot\frac{7a-7b}{a^2+a}\)
  12. \(\displaystyle \frac{(y-5)^2}{2y+12}\cdot\frac{y^2-36}{2y-10}\)
  13. \(\displaystyle \frac{a^2+6a+9}{a^3+27}\cdot\frac{a^2-3a+9}{3a+9}\)
  14. \(\displaystyle \frac{x^3-y^3}{x+y}\cdot\frac{x^2-y^2}{x^2+xy+y^2}\)
  15. \(\displaystyle \frac{a^2+3a}{ab-5b+8a-40}-\frac{a}{b+8}\)
  16. \(\displaystyle \frac{y}{3x-2}-\frac{3y}{6xy+9x-4y-6}\)
  17. \(\displaystyle \frac{a-2y}{a+y}-\frac{y^2-5ay}{a^2-y^2}\)
  18. \(\displaystyle \frac{a+3}{a^2-1}-\frac{1}{a^2+a}\)
  19. \(\displaystyle \frac{b-6}{4-b^2}+\frac{2}{2b-b^2}\)
  20. \(\displaystyle \frac{b}{ab-5a^2}-\frac{15b-25a}{b^2-25a^2}\)
  21. \(\displaystyle \frac{x-12a}{x^2-16a^2}-\frac{4a}{4ax-x^2}\)
  22. \(\displaystyle \frac{x^2-4}{5x-10}-\frac{x^2+4x+4}{5x+10}\)
  23. \(\displaystyle \frac{x-2}{x^2+2x+4}-\frac{6x}{x^3-8}+\frac{1}{x-2}\)
  24. \(\displaystyle \frac{2x^2+16}{x^3+8}-\frac{2}{x+2}\)
  25. \(\displaystyle \left(\frac{a-7b}{ab-b^2}+\frac{7a+b}{a^2-ab}\right):\frac{a^2+b^2}{a-b}\)
  26. \(\displaystyle (y^2-4)\left(\frac{3}{y+2}-\frac{2}{y-2}\right)+5\)
  27. \(\displaystyle \left(1-\frac{9x^2+4}{12x}\right):\left(\frac{1}{3x}-\frac{1}{2}\right)+1\)

Ответы

  1. \(\displaystyle \frac{2}{x-3}\)
  2. \(\displaystyle 2x^2+2xy\)
  3. \(\displaystyle \frac{x-2y}{2xy}\)
  4. \(\displaystyle \frac{a}{a+2}\)
  5. \(\displaystyle \frac{2ab-4a^2}{2a+b}\)
  6. 1
  7. \(-\frac{c^2}{b(b+c)}\)
  8. \(\frac{6}{x(x-2)}\)
  9. \(\frac{4a^2+1}{4a^2-1}\)
  10. \(\frac{a-7}{7(a-2)}\)
  11. \(\frac{7(a-1)}{a}\)
  12. \(\frac{(y-5)(y-6)}{4}\)
  13. 1/3
  14. \((x-y)^2\)
  15. \(\frac{8a}{(b+8)(a-5)}\)
  16. \(\frac{2y^2}{(3x-2)(2y+3)}\)
  17. \(\frac{a+y}{a-y}\)
  18. \(\frac{a+1}{a(a-1)}\)
  19. \(\frac{2-b}{b(b+2)}\)
  20. \(\frac{b-5a}{a(b+5a)}\)
  21. \(\frac{x-4a}{x(x+4a)}\)
  22. 0
  23. \(\frac{2(x-2)}{x^2+2x+4}\)
  24. \(\frac{4}{x^2-2x+4}\)
  25. \(\frac{1}{ab}\)
  26. \(y-5\)
  27. \(\frac{3x}{2}\)