Тригонометрия. Урок 2. Группировка и разложение на множители.
Домашнее задание из В.В. Ткачук “Математика – абитуриенту”
- $$\sin x\cdot(3\sin 2x\sin^3 x+12\sin 2x\sin x-16\cos x)+2\sin 4x=0$$
- $$3\cos 4x+2\cos 2x\cdot (10\cos^4 x+3\cos^2 x+\sin^2 x)+3=0$$
- $$(1+2\sin x)\sin x=\sin 2x+\cos x$$
- $$\sin x+\sin 2x+(1+2\cos x)\cos x=0$$
- [3] $$6tg x+5ctg 3x=tg 2x$$
- $$\sin 3x\cos x=\frac{3}{2}tg x$$
- $$\cos x+\sin x=\frac{\cos 2x}{1-\sin 2x}$$
- [3] $$\frac{1}{\sin x}-\frac{1}{\cos x}=2\sin\frac{\pi}{4}$$
- $$2(\sin^3 x+\cos^3 x)=3\sin 2x\cdot (\sin x+\cos x)$$
- $$\sin 2x\cdot (tg^2 x+3)=4(\cos 2x-1)$$
- $$16\sin x-\sin 2x=1-\cos 2x$$
- [3] $$4\sin x+2\cos x=2+3tg x$$
- [2] $$1+\sin^3 x+\cos^3 x=\frac{3}{2}\sin 2x$$
- $$3tg^2 x+4tg x+4ctg x+3ctg^2 x+2=0$$
- $$\sqrt{3}(\cos 2x +1)=2\cos x\cdot (2-\cos 2x)$$
- $$2(\cos x-1)\sin 2x=3\sin x$$
- [3] $$3\sin x\cos x+4\sin x=4-3\cos^2 x+\cos x$$
- $$2\sin x\cdot tg x+2tg x=\sin x+3\cos x+3$$
- [2] $$2\sin x-4\cos x-tg x=ctg x=2\cos x\cdot ctg x-2$$
- $$1-5\sin x=5ctg x-\frac{\sin^2 x}{\cos x}$$
Ответы к домашнему заданию урока 2 из В.В. Ткачук “Математика – абитуриенту”
По умолчанию, $$n \in Z$$.
- $$\pi n/2, \pm (-1)^n arcsin \sqrt{2/3}+n\pi$$
- $$\pi/4+n\pi/2, \pm arccos(\pm \frac{1}{\sqrt{5}})+2n\pi$$
- $$\pi/4+n\pi, (-1)^{n+1}\pi/6+n\pi$$
- $$-\pi/4+n\pi, \pm 2\pi/3+2n\pi$$
- $$\pm arccos(1/3)/2+n\pi, \pm arccos(-1/4)/2+n\pi$$
- $$n\pi, \pm \pi/6+n\pi$$
- $$-\pi/4+n\pi, -\pi/4\pm \pi/4+2n\pi$$
- $$-\pi/4 \pm arccos((\sqrt{3}-1)/2)+2n\pi$$
- $$-\pi/4+n\pi, (-1)^n\pi/12+n\pi/2$$
- $$n\pi, -\pi/4+n\pi, -arctg3+n\pi$$
- $$n\pi$$
- $$(-1)^n\pi/6+n\pi, 2n\pi, -2arctg(1/2)+2n\pi$$
- $$-\pi/4+(-1)^{n+1}\pi/4+n\pi$$
- $$-\pi/4+n\pi$$
- $$\pi/2+n\pi, \pm \pi/6+2n\pi$$
- $$n\pi, \pm 2\pi/3+2n\pi$$
- $$(-1)^n arcsin(1/3)+n\pi, -\pi/4+(\pm 3\pi/4+2n\pi)$$
- $$\pi+2n\pi, arctg(3/2)+n\pi$$
- $$\pm\pi/3+2n\pi, \pi/4+n\pi$$
- $$\pm arccos((1-\sqrt{5})/2)+2n\pi, arctg5+n\pi$$