- $$\frac{x^2-3x-6}{x}-\frac{8x}{x^2-3x-6}=-2$$
- $$2(x^2+x+1)^2-7(x-1)^2=13(x^3-1)$$
- $$(x^2+10x+21)(x^2+8x+12)=-3$$
- $$\frac{5x}{x^2-5x+3}+\frac{4x}{x^2+x+3}=-\frac{3}{2}$$
- $$x^2+\frac{9x^2}{(x+3)^2}=16$$
- $$\frac{2x^2+x+2}{3x^2-x+3}=\frac{2x^2-3x+2}{x^2-x+1}$$
- $$x^3+\frac{1}{x^3}=5x+\frac{5}{x}$$
- $$(x^2-6x-9)^2=x(x^2-4x-9)$$
- $$(x^2+8x+12)(x^2-4x+3)=-5x^2$$
- $$3(x^4+4)+4x(x^2-2x+2)=0$$
- $$\frac{(x+1)^2}{(x-2)^2}+\frac{x+1}{x-4}=12\cdot\frac{(x-2)^2}{(x-4)^2}$$
- $$(x-2)^4+(x+1)^4=17$$
- $$\frac{x^4+1}{x(x^2+1)}=\frac{41}{15}$$
- $$\frac{x^2}{1-2x^2}=12x^2+7x-6$$
- $$x^2+3x+2=15\cdot\frac{x^2+5x+10}{x^2+7x+12}$$
- $$\frac{24}{x^2-2x}=\frac{12}{x^2-x}+x^2-x$$
- $$(x^2+3x-2)^2+3(x^2+3x-2)-2=x$$
- $$x=1-5(1-5x^2)^2$$
- $$x^4-2\sqrt{2}x^2=x-2+\sqrt{2}$$
- $$\frac{x-1}{x+2}-\frac{x-2}{x+3}=\frac{x-4}{x+5}-\frac{x-5}{x+6}$$
1) -3; -1; 2; 6
2) -1; -1/2; 2; 4
3) (-9+-корень(13))/2; (-9+-корень(21))/2
4) (-5+-корень(13))/2
5) 1+-корень(7)
6) 1
7) корень(2)+-1; -корень(2)+-1
8) -1; 9; (5+-корень(61))/2