ЕГЭ Демонстрационный вариант по математике КИМ 2016 11 класс Профильный уровень

Демонстрационный вариант
контрольных измерительных материалов
для проведения в 2016 году единого государственного экзамена по МАТЕМАТИКЕ

ЕГЭ

Профильный уровень

Условия задач, ответы и решения

Инструкция по выполнению работы
Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом. На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут). Ответы к заданиям 1–12 записываются в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите их в бланк ответов № 1.

При выполнении заданий 13–19 требуется записать полное решение и ответ в бланке ответов № 2. Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой, или капиллярной, или перьевой ручек. При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы. Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
Желаем успеха!

Часть 1

Ответом к заданиям 1–12 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы, затем перенесите его в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую цифру, знак «минус» и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.

1. Поезд отправился из Санкт-Петербурга в 23 часа 50 минут (время московское) и прибыл в Москву в 7 часов 50 минут следующих суток. Сколько часов поезд находился в пути?

2. На рисунке точками показана средняя температура воздуха в Сочи за каждый месяц 1920 г. По горизонтали указаны номера месяцев; по вертикали — температура в градусах Цельсия. Для наглядности точки соединены линией. Сколько месяцев средняя температура была больше 18 градусов Цельсия?

ЕГЭ

3. На клетчатой бумаге с размером клетки 1 см × 1 см изображён треугольник. Найдите его площадь. Ответ дайте в см2.

ЕГЭ треугольник

4. В сборнике билетов по биологии всего 25 билетов. Только в двух билетах встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах.

5. Найдите корень уравнения 3^{x-5}=81

6. Треугольник ABC вписан в окружность с центром O. Угол BAC равен 32°. Найдите угол BOC. Ответ дайте в градусах.

7. На рисунке изображён график дифференцируемой функции y=f(x). На оси абсцисс отмечены девять точек: x_1, x_2, ..., x_9. Найдите все отмеченные точки, в которых производная функции y=f(x) отрицательна. В ответе укажите количество этих точек.

ЕГЭ Функция

8. В первом цилиндрическом сосуде уровень жидкости достигает 16 см. Эту жидкость перелили во второй цилиндрический сосуд, диаметр основания которого в 2 раза больше диаметра основания первого. На какой высоте будет находиться уровень жидкости во втором сосуде? Ответ выразите в см.

Часть 2

9. Найдите \sin\alpha, если \cos\alpha = 0,6 и \pi<\alpha<2\pi.

10. Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковой сигнал частотой 749 МГц. Приёмник регистрирует частоту сигнала, отражённого от дна океана. Скорость погружения батискафа (в м/с) и частоты связаны соотношением v=c\cdot\displaystyle\frac{f-f_0}{f+f_0},где c = 1500 м/с — скорость звука в воде; f_0— частота испускаемого сигнала (в МГц); f — частота отражённого сигнала (в МГц). Найдите частоту отражённого сигнала (в МГц), если батискаф погружается со скоростью 2 м/с.

11. Весной катер идёт против течения реки в 1\displaystyle\frac{2}{3} раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в 1\displaystyle\frac{1}{2} раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).

12. Найдите точку максимума функции y=\ln(x+4)^2+2x+7.

Для записи решений и ответов на задания 13–19 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

13. а) Решите уравнение \cos 2x=1-\cos (\frac{\pi}{2}-x).

б) Найдите все корни этого уравнения, принадлежащие промежутку [-5\pi/2; -\pi).

14. Все рёбра правильной треугольной призмы ABCA1B1C1 имеют длину 6. Точки M и N — середины рёбер AA1 и A1C1 соответственно. а) Докажите, что прямые BM и MN перпендикулярны. б) Найдите угол между плоскостями BMN и ABB1.

15. Решите неравенство \displaystyle\frac{\log_9(2-x)-\log_{15}(2-x)}{\log_{15}x-\log_{25}x}\le\log_{25}9

16. Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
а) Докажите, что прямые AD и BC параллельны.
б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.

17. 31 декабря 2013 г. Сергей взял в банке 9 930 000 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Сергей переводит в банк определённую сумму ежегодного платежа. Какова должна быть сумма ежегодного платежа, чтобы Сергей выплатил долг тремя равными ежегодными платежами?

18. Найдите все положительные значения a, при каждом из которых система \left\{\begin{array}{l l} (|x|-5)^2+(y-4)^2=9,\\ (x+2)^2+y^2=a^2\end{array}\right. имеет единственное решение.

19. На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно −3, среднее арифметическое всех положительных из них равно 4, а среднее арифметическое всех отрицательных из них равно −8.
а) Сколько чисел написано на доске?
б) Каких чисел написано больше: положительных или отрицательных?
в) Какое наибольшее количество положительных чисел может быть среди них?

Ответы

1. 8

2. 4

3. 6

4. 0,08

5. 9

6. 64

7. 4

8. 4

9. -0,8

10. 751

11. 5

12. -5

13. а) \pi n, n\in Z; (-1)^k\pi/6+\pi k, k\in Z б) -2\pi; -11\pi/6; -7\pi/6

14. б) \arcsin\sqrt{\frac{3}{8}}

15. (0;1), (1;2)

16. 3,2

17. 3993000 руб

18. 2; \sqrt{65}+3

19. а) 44; б) отрицательных; в) 17