Демонстрационный вариант
контрольных измерительных материалов
для проведения в 2016 году единого государственного экзамена по МАТЕМАТИКЕ
Профильный уровень
Условия задач, ответы и решения
Инструкция по выполнению работы
Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом. На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут). Ответы к заданиям 1–12 записываются в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите их в бланк ответов № 1.
При выполнении заданий 13–19 требуется записать полное решение и ответ в бланке ответов № 2. Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой, или капиллярной, или перьевой ручек. При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы. Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
Желаем успеха!
Часть 1
Ответом к заданиям 1–12 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы, затем перенесите его в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую цифру, знак «минус» и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.
1. Поезд отправился из Санкт-Петербурга в 23 часа 50 минут (время московское) и прибыл в Москву в 7 часов 50 минут следующих суток. Сколько часов поезд находился в пути?
2. На рисунке точками показана средняя температура воздуха в Сочи за каждый месяц 1920 г. По горизонтали указаны номера месяцев; по вертикали — температура в градусах Цельсия. Для наглядности точки соединены линией. Сколько месяцев средняя температура была больше 18 градусов Цельсия?
3. На клетчатой бумаге с размером клетки 1 см × 1 см изображён треугольник. Найдите его площадь. Ответ дайте в см2.
4. В сборнике билетов по биологии всего 25 билетов. Только в двух билетах встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах.
5. Найдите корень уравнения
6. Треугольник ABC вписан в окружность с центром O. Угол BAC равен 32°. Найдите угол BOC. Ответ дайте в градусах.
7. На рисунке изображён график дифференцируемой функции . На оси абсцисс отмечены девять точек: . Найдите все отмеченные точки, в которых производная функции отрицательна. В ответе укажите количество этих точек.
8. В первом цилиндрическом сосуде уровень жидкости достигает 16 см. Эту жидкость перелили во второй цилиндрический сосуд, диаметр основания которого в 2 раза больше диаметра основания первого. На какой высоте будет находиться уровень жидкости во втором сосуде? Ответ выразите в см.
Часть 2
9. Найдите , если и .
10. Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковой сигнал частотой 749 МГц. Приёмник регистрирует частоту сигнала, отражённого от дна океана. Скорость погружения батискафа (в м/с) и частоты связаны соотношением ,где = 1500 м/с — скорость звука в воде; — частота испускаемого сигнала (в МГц); — частота отражённого сигнала (в МГц). Найдите частоту отражённого сигнала (в МГц), если батискаф погружается со скоростью 2 м/с.
11. Весной катер идёт против течения реки в раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).
12. Найдите точку максимума функции .
Для записи решений и ответов на задания 13–19 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.
13. а) Решите уравнение .
б) Найдите все корни этого уравнения, принадлежащие промежутку .
14. Все рёбра правильной треугольной призмы ABCA1B1C1 имеют длину 6. Точки M и N — середины рёбер AA1 и A1C1 соответственно. а) Докажите, что прямые BM и MN перпендикулярны. б) Найдите угол между плоскостями BMN и ABB1.
15. Решите неравенство
16. Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
а) Докажите, что прямые AD и BC параллельны.
б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.
17. 31 декабря 2013 г. Сергей взял в банке 9 930 000 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Сергей переводит в банк определённую сумму ежегодного платежа. Какова должна быть сумма ежегодного платежа, чтобы Сергей выплатил долг тремя равными ежегодными платежами?
18. Найдите все положительные значения , при каждом из которых система имеет единственное решение.
19. На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно −3, среднее арифметическое всех положительных из них равно 4, а среднее арифметическое всех отрицательных из них равно −8.
а) Сколько чисел написано на доске?
б) Каких чисел написано больше: положительных или отрицательных?
в) Какое наибольшее количество положительных чисел может быть среди них?
1. 8
2. 4
3. 6
4. 0,08
5. 9
6. 64
7. 4
8. 4
9. -0,8
10. 751
11. 5
12. -5
13. а) б)
14. б)
15. (0;1), (1;2)
16. 3,2
17. 3993000 руб
18.
19. а) 44; б) отрицательных; в) 17